
Dissemination of Dynamic Data�

Pavan Deolasee Amol Katkar Ankur Panchbudhe Krithi Ramamritham Prashant Shenoy

Department of Computer Science and Engineering. Department of Computer Science
Indian Institute of Technology Bombay University of Massachusetts

Mumbai, India 400076 Amherst, MA 01003
fpavan,amolk,ankurp,krithig@cse.iitb.ernet.in fkrithi,shenoyg@cs.umass.edu

An increasing fraction of the data disseminated through the the in-

ternet is time-varying (i.e., changes frequently). Examples of such

data include sports information, news, and financial information

such as stock prices. An important issue then is the maintenance

of their temporal coherency. A user may be willing to receive

sports and news information that may be out-of-sync by a few min-

utes with respect to the server, but may desire to have stronger co-

herency requirements for data items such as stock prices. We as-

sume that a user specifies a temporal coherency requirement (t
r)

for each item of interest. The value of t
r denotes the maximum

permissible deviation of the presented value from the value at the

server and thus constitutes the user-specified tolerance. We con-

sider temporal coherency requirements specified in terms of the

value of the object (maintaining temporal coherency specified in

units of time is a simpler problem that requires less sophisticated

techniques). As shown in Figure 1, let S(t), P (t) and U(t) denote

the value of the data item at the server, proxy cache and the user,

respectively. Then, to maintain temporal coherency we should have

jU(t)� S(t)j � 
:

Push or Pull
Push User

S(t)
Server Proxy

P(t) U(t)

Figure 1: The Problem of Temporal Coherency

Push vs. Pull. In the case of servers that only respond to pulls,

clients need to frequently pull the data based on the dynamics of

the data and a user’s coherency requirements. In contrast, servers

that possess push capability maintain state information pertaining

to clients and push only those changes that are of interest to a user.

We have conducted extensive evaluation of the canonical push- and

pull-based techniques using traces of real-world dynamic data. Our

results show that (a) a pull-based approach does not offer high fi-

delity when the data changes rapidly or when the coherency re-

quirements are stringent. Moreover, the pull-based approach im-

�Work supported by National Science foundation grants IRI-
9619588, CCR-9984030, CDA-9502639 and EIA-0080119, Tata
Consultancy Services, IBM, MERL, EMC, IBM, Intel, and Sprint.

poses a large communication overhead (in terms of the number of

messages exchanged) when the number of clients is large; (b) a

push-based algorithm can offer high fidelity for rapidly changing

data and/or stringent coherency requirements. However, it incurs a

significant computational and state-space overhead resulting from

a large number of open push connections. Moreover, the approach

is less resilient to failures due to its stateful nature. These proper-

ties indicate that a push-based approach is suitable when a client

requires its coherency requirements to be satisfied with a high fi-

delity, or when the communication overheads are the bottleneck. A

pull-based approach is better suited to less frequently changing data

or for less stringent coherency requirements, and when resilience to

failures is important.

Adaptive Combinations of Push and Pull. T
rs of clients may

vary across clients and bandwidth availability may vary with time,

so a static solution to the problem of disseminating dynamic, i.e.,

time-varying, data will not be responsive to client needs or load and

bandwidth changes. We need an intelligent and adaptive approach

that can be tuned according to the client requirements and condi-

tions prevailing in the network or at the server/proxy. Moreover,

the approach should not sacrifice the scalability of the server (under

load) or reduce the resiliency of the system to failures. To this end,

we demonstrate several techniques1 that combine push and pull in

an intelligent and adaptive manner while offering good resiliency

and scalability. These include:

1. PaP , which simultaneously employs both push and pull to

disseminate data, but has tunable parameters to determine the

degree to which push and pull are used. Conceptually, pull

is used, with the server allowed to push additional updates

that are undetected by the pulls. By appropriate tuning, our

algorithm can be made to behave as a push algorithm, a pull

algorithm or a combination. Since both push and pull are si-

multaneously employed, albeit to different degrees, we refer

to this algorithm as Push-and-Pull (PaP).

2. PoP , which allows a server to adaptively choose between

push- and pull-based dissemination for each connection. More-

over, the algorithm can switch each connection from push to

pull and vice versa depending on the rate of change of data,

the temporal coherency requirements and resource availabil-

ity. Since the algorithm dynamically makes a choice of push

or pull, we refer to it as Push-or-Pull (PoP).

We demonstrate these algorithms using continuous queries over dy-

namic Web data.

1P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P.
Shenoy, Adaptive Push-Pull: Dissemination of Dynamic Web Data,
10th International World Wide Web Conference, May 2001.


